
IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 5, NO. 4, OCTOBER 2020 6567

Rolling Soft Membrane-Driven Tensegrity Robots
Robert L. Baines , Joran W. Booth , and Rebecca Kramer-Bottiglio

Abstract—We present a methodology for designing, fabricating,
and controlling rolling membrane-driven tensegrity robots. This
methodology is enabled by pneumatic membrane actuators and a
generalized path planning algorithm for rolling polyhedra. Mem-
brane actuators are planar, assembled in a scalable fashion, and
amenable to arbitrary geometries. Their deformation trajectories
can be tuned by varying the stacking sequence and orientation
of layers of unidirectional lamina placed on their surfaces. We
demonstrate the application of the same set of membrane actuators
consisting of polygonal faces of Platonic Solids to create polyhedral
tensegrity variants. Three specific tensegrities in the forms of cube,
dodecahedron, and rhombicuboctahedron are chosen to demon-
strate the path planning algorithm, though the algorithm is gen-
eralizable to any uniform or non-uniform n-sided polyhedra. The
membrane-driven tensegrities are able to roll in unique trajectories
and circumvent obstacles contingent on the distribution and types
of polygons which constitute their faces.

Index Terms—Soft robot applications, tensegrity, motion and
path planning.

I. INTRODUCTION

THE word tensegrity was coined by Buckminster Fuller, as
a blend word to describe a type of structure composed

of rigid parts under compression and compliant elements in
tension [1]. The tensegrity paradigm is widespread, arising in
biological structures, interpretations in art and architecture, as
well as mechanisms with high strength-to-weight ratios [1]–[4].
More recently, tensegrities have gained traction in robotics as
a means to navigate in unstructured or dynamically chang-
ing environments, places where traditional rigid robots often
under-perform because external disturbances may damage or
entirely destroy them. Tensegrities distribute external forces
or disturbances internally through their network of tensile and
compression elements, mitigating stress concentrations that
might otherwise lead to mechanical failure in a traditional
robot [5].

Manuscript received February 24, 2020; accepted July 18, 2020. Date of
publication August 7, 2020; date of current version August 20, 2020. This
letter was recommended for publication by Associate Editor R. Niiyama and
Editor K.-J. Cho upon evaluation of the Reviewers’ comments. The work
of R.L. Baines was supported by the National Science Foundation Graduate
Research Fellowship under Grant DGE-1333468. The work of J. W. Booth was
supported by NASA through the Early Career Faculty Program under Grant
80NSSC17K0553. (Corresponding author: Rebecca Kramer-Bottiglio.)

The authors are with the Department of Mechanical Engineering and
Materials Science, School of Engineering and Applied Science, Yale Uni-
versity, New Haven, CT 06520 USA (e-mail: robert.baines@yale.edu;
joran.booth@yale.edu; rebecca.kramer@yale.edu).

This article has supplementary downloadable material available at http:
//ieeexplore.ieee.org, provided by the authors.

Digital Object Identifier 10.1109/LRA.2020.3015185

Fig. 1. With square, triangle, and pentagon -shaped membrane actuators as
building blocks, we can construct a variety of polyhedra tensegrities. Based on
their face arrangement and shapes, tensegrities may be created to more accurately
roll on specified paths.

To impart motion onto a tensegrity, actuation schemes usually
incorporate rigid motors that spool and contract the tensile
elements [5]–[9]. Contracting tensile elements shifts the center
of mass of a tensegrity, making it statically unstable, and as a
consequence, it rolls to an adjacent face. One group inverted
convention, making a tensegrity with linear actuators as struts
to displace the cables [10]. A marked departure from controlling
tensions in cables to destabilize the center of mass used vibration
as a means for small tensegrities to move [11].

Considering previous work, it may be advantageous to rely
on soft material actuators for tensegrity locomotion, rather than
rigid motors. For example, replacing motors with soft actua-
tors could enable new locomotion modes. A tensegrity driven
by soft contracting McKibben actuators introduced the first
platform that rolled without motors [12]. More recently, our
group showed a tensegrity driven by contraction of robotic
skins consisting of McKibben actuators and soft sensors em-
bedded into a single substrate [13]. In addition, groups have
demonstrated tensegrities that actuated using shape memory
alloy [14], [15] and shape memory polymer struts with elas-
tomer tensile elements [16]. The aforementioned demonstra-
tions relied on several actuators per face to impart deforma-
tion, making control highly complex. In addition, the designs

2377-3766 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Yale University. Downloaded on September 11,2020 at 15:20:12 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-9023-1536
https://orcid.org/0000-0002-7380-3416
https://orcid.org/0000-0003-2324-8124
mailto:robert.baines@yale.edu
mailto:joran.booth@yale.edu
mailto:rebecca.kramer@yale.edu
http://ieeexplore.ieee.org


6568 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 5, NO. 4, OCTOBER 2020

Fig. 2. Fabrication of membrane actuators is simple and scalable. Membrane actuators operate via volumetric expansion, which can be either constrained or
unconstrained. After steps 1-4, step 5 shows unconstrained membrane actuators that expand out-of-plane. With the addition of unidirectional laminae patches (step
5a), the actuator expansion can be constrained and directed into areal extension or contraction of the membrane. In step 6a, the depicted triangular membrane is
divided into three cavities, each with its own inlet. All three tubes are connected to the same air supply; the cavities inflate together.

relied on contractile motion between the nodes, overlooking the
wealth of possible locomotion strategies that could be achieved
by other motion primitives, such as extension or out-of-plane
expansion.

This letter’s first contribution is a design space for a new
class of tensegrity, which we coin the membrane tensegrity. In
contrast to a typical tensegrity where every member experiences
exclusively axial forces concentrated at nodes, a membrane
tensegrity’s struts are held in compression by entirely soft
membranes that sustain forces in a plane, rather than an axis,
and simultaneously serve as actuators. Membrane actuators can
impart motion onto tensegrities in new and unexplored ways, in-
cluding out-of-plane expansion to change center of mass without
displacing the nodes, and areal extension and contraction that
change center of mass by displacing the nodes. The same set of
membranes and struts can be used to create myriad tensegrities
in the space of uniform and non-uniform polyhedra (Fig. 1). An
outcome of using membrane actuators is that the arrangement of
polygons which constitute a tensegrity’s faces can be modulated
to tailor performance in a given set of path planning problems.
Incidentally, the problem of path planning for tensegrities is a
relatively unexplored field. Thus, the second contribution of this
letter is a generalized path planning algorithm for rolling polyhe-
dra that goes hand-in-hand with the modular nature of membrane
actuators.

II. MEMBRANE ACTUATORS

A. Fabrication of Membrane Actuators

Membrane actuators form the basis of the tensegrities con-
structed herein. Membrane actuators are simple to fabricate,
easily formed to unique geometries, lightweight, and, due to their
thinness, can be compacted into a small volume. Fig. 2 illustrates
the fabrication process for membrane actuators. Membrane actu-
ators operate via volumetric expansion, which can be either con-
strained or unconstrained. Unconstrained membranes result in
out-of-plane expansion (top), while constrained membranes (via
the addition of unidirectional laminae) result in motions such as

in-plane areal extension and contraction (top plus bottom). Both
fabrication procedures follow the same first four steps.

First, a 2 mm layer of elastomer resin (Dragon Skin 10 Fast,
SmoothOn Inc.) was rod-coated onto polyethelene terephthalate
(PET) film with a precision threaded rod. Then, we flipped the
rod-coated sheet over, PET-side up, and laser-cut away the PET
to selectively mask the area of a desired internal bladder, or mul-
tiple segmented bladders (VSL 2.30, Universal Laser Systems).
Next, another 2 mm thick layer of elastomer was applied via
rod coating. To make out-of-plane expanding membranes, we
laser cut out the desired shape contour, removed the internal
PET sheet, and inserted silicone tubing to enable inflation. For
directionally constrained membranes (Fig. 2, bottom), we addi-
tionally cut out elastomer laminae with embedded unidirectional
fibers [17], and adhered those to the both sides of the membrane
to govern its inflation trajectory.

B. Motion Primitives by Varying Fiber Orientation

We are able to elicit a number of motion primitives from
membrane actuators by adhering directionally-constraining
laminae onto membrane surfaces (Fig. 3). In addition to expan-
sion, extension, contraction, twist, and bending motion prim-
itives, it is possible to elicit highly complex deformations by
superposition and localization of lamina stacking sequences.

We created oblong rectangular membrane actuator specimens
(125 mm x 25 mm) to better visualize the motion primitives. The
far left of Fig. 3 presents a side view of a deflated membrane
actuator for reference. To the right are side views of actuators
inflated with 150 mL of air, numbered as specimens 1–5. Fiber
orientation of the laminae influenced axial strain εa, transverse
strain (i.e. bulge) εt, and if applicable, twisting γr and bending
γb. Specimen 1, with no laminae, exhibits εt/εa = 69. For the
extension actuator, specimen 2, εt/εa = 11.32. The ratio is small
relative to that of specimen 1 and testifies to the fact that much
of the deformation has been forced in the desired direction.
Essentially a 2D McKibben muscle, specimen 3 maintains a
relatively small εt/εa = −22 as well, yet undergoes contraction
comparable to traditional McKibben muscles [18]. Of course, as

Authorized licensed use limited to: Yale University. Downloaded on September 11,2020 at 15:20:12 UTC from IEEE Xplore.  Restrictions apply. 



BAINES et al.: ROLLING SOFT MEMBRANE-DRIVEN TENSEGRITY ROBOTS 6569

Fig. 3. Oblong 2D rectangular membrane actuators to better visualize motion
primitives. The schametic above each specimen shows the angle, relative to
vertical, at which fibers are embedded in any attached laminae. Left to right: at
rest, inflated without any lamina, with fibers at 90◦ to force extension, ±30◦ on
both sides to create a McKibben-style contraction, 45◦ mirrored on each side
for twist, and 90/0◦ on one side for bending. All were inflated with 150 mL of
air. Scale bar: 30 mm.

with traditional McKibben muscles, the exact strains achievable
are a function of the fiber braid angle. Owing to the simplic-
ity of the fabrication process, the braid angle can easily be
tuned. Moving on to the next motion primitives, specimen 4
twists one complete revolution while maintaining a smaller
εa = −0.11. However, the lack of axial deformation manifested
itself transversely; εt was comparable to that of specimen 1,
making εt/εa = 102. Lastly, specimen 5 bends at γb = 350◦,
nearly completing a full curl, with εt/εa = −25.

The exact strain-to-pressure or -volume relationship for a
membrane actuator depends on geometry, pre-strains, and forces
induced when they are initially placed between tensegrity nodes.
Due to the extent of the membrane actuator design space,
data presented in Fig. 3 is intended to indicate general rela-
tionships between fiber placement and motion primitives, not
definitive specifications for implementation. In this letter, we
utilize square, pentagon, and triangle out-of-plane expanding
membrane actuators for hardware implementation of path plan-
ning.

C. Assembly of Membrane-Driven Tensegrity Robots

The mechanism by which a tensegrity outfitted with out-of-
plane expanding membrane actuators rolls is depicted in the
top of Fig. 4. Inflating a downward membrane creates a bubble
of curvature k, an unstable equilibrium which, perturbed by
inflation of neighboring faces, biases the center of mass to favor
rolling to a particular face. Note the bubble is highlighted green.
On the other hand, the bottom of Fig. 4 shows how a tensegrity
with constrained extension membrane actuators rolls. Inflation
of a face displaces nodes with a strain ε, shifting center of gravity
and toppling the robot. Both rolling mechanisms are shown in
real-time in Supplementary Video Part 1.

Fig. 4. Rolling mechanisms for tensegrities with out-of-plane expanding
membrane actuators, which minimally shift the struts (top dodecahedron),
and extension membrane actuators, which significantly shift the struts (bottom
icosahedron). Scale bars: 25 mm (top), 40 mm (bottom).

In the present letter, we explore the utility of out-of-plane
expanding membrane actuators on a rolling tensegrity because:
1) among the motion primitives in Fig. 3, we believe expansion
to dislodge tensegrity center of mass is most conducive to
making tensegrities roll, 2) the expansion membrane lends itself
to a simplistic actuation strategy compared to the constrained
actuators, and 3) tensegrities utilizing out-of-plane expansion to
move have not yet been reported. Though we proceed with this
limited scope, we believe the motion primitives present in Fig. 3,
and combinations thereof, should provide engineers an ample
tool set to devise novel locomoting membrane tensegrities.

Polyhedra tensegrities were constructed using the same set of
membrane actuators (out-of-plane expanding square, pentagon,
and triangle with side lengths 50 mm) and 1/16 in diameter car-
bon fiber composite struts (McMaster Carr) of 125 mm length.
In our specific hardware implementation, the cube, dodecahe-
dron, and rhombicuboctahedron tensegrities consisted of four,
ten, and twelve struts, respectively. At each end of each strut,
3D-printed nodes provided an interface site for the membranes.
To preserve modularity and interchangeability, we did not bond
the membranes to the nodes. Rather, compression supplied by
the membrane network held the structure intact.

III. PATH PLANNING FOR MEMBRANE TENSEGRITIES

A sizable body of literature employs machine learning tech-
niques for control of tensegrity robots. These works focus on
how to generate actuator commands required to travel the fur-
thest by some heuristic within a given time frame (usually eu-
clidean distance between two points over 60 s) [19]–[21]. Other
research developed actuator policies for rolling icosahedron and
rhombicuboctahedron tensegrities, but in consideration of the
latter shape, did not allow for rolling to and from triangular
faces that are a source of great complexity in movement [22].

In contrast to the large amount of literature developing ac-
tuator control policies for tensegrities, scant work pertains to
path planning in the traditional sense of solving for a route

Authorized licensed use limited to: Yale University. Downloaded on September 11,2020 at 15:20:12 UTC from IEEE Xplore.  Restrictions apply. 



6570 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 5, NO. 4, OCTOBER 2020

from point A to B in the presence of obstacles. Prior research
most related to the tensegrity path planning domain presented
algorithms for a specific geometric configuration: the popular
six-strut icosahedron tensegrity. One group introduced a steer-
able locomotion controller for an icosahedron tensegrity which
mapped user joystick inputs to a rolling sequence [23]. Another
group presented a sampling-based kinodynamic planning ap-
proach for an icosahedron tensegrity approximated as a spherical
entity [24].

The use of membrane actuators—modular units adaptable
to arbitrary shapes and easily assembled on-the-fly to create
unique polyhedra tensegrities—demands a path planning algo-
rithm agnostic to shape and configuration to truly realize their
potential. Pioneering work furnished mathematical context for
generalized polyhedra rolling on a plane yet conceded they
were not able to test their algorithm on a system, simulated or
physical [25]. We build on prior work and create a generalized
path planning algorithm for rolling n-sided polyhedra, uniform
or non-uniform. The algorithm combines the A* graph search
with geometric constraints of a given polyhedra. Instead of
relying on hard-coded coordinate frame assignments and a series
of affine transformations, variables that change based on shape,
our algorithm maintains generality by evoking an optimization
routine to keep track of the orientation of a polyhedra as it rolls.

A. Geometric Reasoning for Planning Algorithm

As a polyhedra tensegrity rolls, its downward face poly-
gon P will occupy a unique orientation on the ground. The
orientation-invariant possible set of moves from any downward
face contacting the ground to its neighboring faces which share
an edge can be considered as its geometric footprints F . Fig. 5
gives examples of different polyhedra downward faces and their
neighbors flattened into footprints. Notice that the cube has
one such footprint, and it forms a perfectly tessellating square
grid. In contrast, the dodecahedron and rhombicuboctahedron
do not have perfectly tessellating grids. Furthermore, F for the
rhombicuboctahedron contains three items.

The subset of F that is a grid of perfectly tessellating poly-
gons, like the triangle, square and hexagon, is easy to visualize
and a simple space in which to plan movement from point A to
point B. Consider the cube. Evoking the famous A* algorithm,
an evaluation function is used to find the optimal path across the
grid in the presence of obstacles:

f(n) = g(n) + h(n) (1)

Here, g(n) is the cost from the initial node to the present node
n, and h(n) estimates the cost of an optimal path from node n to
the goal node; a value that is defined by the heuristic (commonly
euclidean distance). At each step, the algorithm picks the next
n to move to with the lowest f [26].

We cannot constrain our tensegrity design space to uniform
grids of perfectly tessellating shapes because membrane actu-
ators can achieve any shape and tensegrities can be composed
of multiple differently shaped polygonal membrane actuators.
Imperfectly tessellating polyhedra footprints and those which
are non-uniform (constituted of disparate polygonal faces) may

Fig. 5. Each polyhedra has a unique set of footprints that determine the
possible set of paths it can achieve via rolling. Imperfectly tessellating polyhedra
pose the challenge of a large, complex grid for planning motions.

exhibit non-holonomy. That is, rolling from point A to point
B, each step of the tensegrity depends on the previous step(s)
taken. The sheer magnitude of configurations of F on the plane
prohibits explicitly developing a grid of possible moves in F a
priori for larger search spaces. For visualization, the bottom row
of Fig. 5 shows the stacked contours F for two moves. It is clear
that planning optimal movements in large grids—where rolls
may be on the order of hundreds—becomes computationally
expensive. Thus we take an alternative approach. We sacrifice
guarantees of admissibility for practicality and fast convergence
on a viable path.

B. General Path Planning for Polyhedra Tensegrity

In our path planning pipeline, we first impose a dense square
grid on the environment and perform a traditional A* search de-
fined by Equation 1 to compute a path oblivious to the geometric
rolling constraints of the tensegrity. Next, Algorithm 1 begins.
The path generated by A* is further discretized into a series of
checkpoints via a createCheckPoints method. The number of
checkpoints is arbitrarily set to lie between the A* path length
divided by the shortest edge of the polyhedra and the A* path
length divided by the longest edge. This technique ensures that
there is a sufficient number of checkpoints to prevent straying
from the A* path or, conversely, excessive meandering. Next, for
a given polyhedra comes a set of adjacency relationships A. We
can use A to find centroid-to-centroid distances lj for each of
the footprints, where j = 1, . . ., k and k is the number of unique
centroid-to-centroid distances for a polyhedra. We can also use

Authorized licensed use limited to: Yale University. Downloaded on September 11,2020 at 15:20:12 UTC from IEEE Xplore.  Restrictions apply. 



BAINES et al.: ROLLING SOFT MEMBRANE-DRIVEN TENSEGRITY ROBOTS 6571

Algorithm 1: Rolling n-sided Tensegrity Following A*-
Generated Path.

Input: A∗, O,F�A∗ Path, Obstacles, Footprints
Output: storedFaces� Vector of Faces Traversed

1: cpoints = createCheckPoints(A∗)
2: d = ‖[x, y]Face, [x, y]cpoint‖L2 � Initialize Distance

to Checkpoint
3: for length(cpoints) do
4: while d > tol do � Roll Until Within tol Tolerance
5: [l, φ] = findCentroids(F ,A)
6: [ξ, faces] = generalOrient([x, y]prevFace)
7: ctroid = [x, y]Face ∗ l ∗ cos(φ+ ξ)
8: for n ∈ P do �n-sided Polygon on Ground
9: if ctroid(n) ∈ O then

10: ctroid(n) = ∞ � Penalize Collisions
11: [[x, y]nextFace, i] = min ‖ctroid, [x, y]cpoint‖L2

12: faceNumselected = faces(i)
13: rollToNextFace([x, y]nextFace)
14: [x, y]prevFace = [x, y]Face

15: [x, y]Face = [x, y]nextFace

16: d = ‖[x, y]Face, [x, y]cpoint‖L2 � Update
17: storedFaces.append(faceNumselected)

A to find the angles φ of neighboring centroids relative to P .
Both tasks are accomplished via the findCentroids method.
Note that A depends on a user-defined numbering scheme for
faces. For example, on the cube, we could have labeled each of
the sides 1–6. If P = 1 then A contains 2, 3, 4, and 5—faces
sharing an edge with 1. l is a centroid-to-centroid distance
between neighboring faces and is constant for uniform polyhedra
like the cube but can change for non-uniform polyhedra like the
rhombicuboctahedron.

After delineating neighboring faces’ centroid coordinates rel-
ative toP , the generalOrientmethod is invoked. We keep track
of the orientation of the polyhedra as well as user-numbered
faces across which a tensegrity rolls while retaining generality
for any n-sided polyhedra, uniform or non-uniform. To do so,
in generalOrient we employ a 1D optimization that finds the
angle ξ which minimizes the distance between [x, y]prevFace

and [x, y]Face:

min
ξ

‖[x, y]prevFace − ([x, y]Face

+ [lcos(ξ + φ), lsin(ξ + φ)])‖ (2)

ξ is propagated throughout the rolling sequence as an additive
term to compensate for generic changes in orientation to F . The
generalOrient method also outputs the face numbers faces
within the footprint that can be used later to convert a computed
path to a sequence of actuator commands on the physical system.
After the optimization routine, the footprint of possible single
moves is searched for the face which lies closest to the current
checkpoint in line 11. If there are no obstacles O contained
within the same face as a potential roll, the tensegrity rolls
across the corresponding edge. The chosen face number is stored
in storedFaces. Rolling reveals a new footprint of potential

rolls. The process of expanding the footprint and evaluating for
the closest face that does not contain obstacles loops until the
tensegrity rolls within a threshold tol of the checkpoint. When
the tensegrity is within tol, the algorithm increments to the next
checkpoint on the A* path. The geometric constraints imposed
during rolling are that the tensegrity can only roll over edges,
not corners, and it must chose a next move bounded by F .

Using this planning pipeline, we exploit a fast initial search
for an optimal path on a grid that is perfectly tessellating,
followed by subsequent ordered searches constrained to the
number of elements in F that strive to best follow the optimal
path. Convergence on a viable path can occur faster than it
does compared to performing an A* with polyhedra geometric
constraints defined at each step, especially for polyhedra with
F which do not tessellate the plane.

C. Implementing Membrane Tensegrity Path Planning in a
Simulated Maze

To validate the generalized algorithm, we used it in path plan-
ning of simulated cube, dodecahedron, and rhombicuboctahe-
dron -shaped membrane tensegrities. In MATLAB, we simulated
the same maze for each type of membrane tensegrity which
had equivalent edge lengths, matching those of actual hardware
used later (50 mm). A* was broken into 70 checkpoints based
on the side length of the tensegrity and the size of the grid.
Fig. 6 presents simulation results. Gray sections denote walls
and the A* generated path is the dashed red line. Polyhedra
footprints are shown by alternating colors and the black line
connects downward faces step-wise over time. Starting at the
bottom left, each case was able to reach the goal at the top left.

The percentage error between the distance of the A*-
generated path on the imposed fine square grid and the distance
traveled by our simulated tensegrity indicates extent of deviation
from an optimal path. For the cube, dodecahedron, and rhom-
bacuboctehedron, the percentage error between the optimal path
and the actual route taken via Algorithm 1 was 11.5%, 21.6%,
and 28.9%, respectively. The increasing error with complexity
of shape is evidenced visually by the straighter routes the cube
takes relative to the meandering routes of the other shapes.

Another finding from Fig. 6 is that the centroid-to-centroid
distance l between each downward face in a footprint governs
the number of total rolls required to reach the goal. For instance,
the dodecahedron only took 74 rolls to reach the goal compared
to the cube’s 91 rolls. Interestingly, the rhombicuboctahedron
took 116 rolls to reach the goal. Consisting of both triangles and
squares, it has greater mobility than the cube. While greater mo-
bility is advantageous for more closely following checkpoints,
it can encourage meandering in between those checkpoints,
causing polyhedra to take indirect paths toward the goal.

In a similar vein, we note that as a polyhedra tensegrity
decreases in θ it approximates a sphere more, and is able to
make both sharper turns and smoother diagonal movements.
This fact is underscored when comparing the dodecahedron
and cube’s diagonal movement portions in the maze. The cube
makes two movements to approximate a diagonal, owing to
the θ = 90◦ edge spacing of its footprint. In contrast, the

Authorized licensed use limited to: Yale University. Downloaded on September 11,2020 at 15:20:12 UTC from IEEE Xplore.  Restrictions apply. 



6572 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 5, NO. 4, OCTOBER 2020

Fig. 6. Solving a simulated maze: rolling polyhedra can traverse a generated A* path broken into checkpoints, irrespective of shape. The geometry of the shape
determines the ability to move in straight lines, take sharp or smooth corners, and also influences the number of rolls needed to reach the goal.

dodecahedron has much more movement flexibility due to its
smaller θ = 36◦ (Fig. 5), though it cannot maintain a purely
straight path like the cube. In practical applications, there exists
a balancing act between size and shape of a membrane tensegrity
to minimize energy of traversal across a path. Larger or fewer
faces allow a tensegrity to reach a point with fewer rolls, and
therefore fewer actuation cycles. Yet on physical systems larger
size implies greater mass; and fewer faces means more shift
must occur to destabilize center of mass. On the other hand,
smaller or more faces may require more rolls but have less
mass to move and may more accurately approximate a path.
Here the advantage of membrane actuators comes to the fore:
ease adapting them to custom geometries and sizes should help
the engineer faced with the unique challenges of tensegrity
navigation.

D. Translating Simulated Path Planning to Reality

To further evaluate the generalized algorithm pipeline, we
simulated a simple path planning problem on the three tenseg-
rity variants presented in Fig. 5 and translated the solution to
hardware (Supplementary Video Part 2). We conducted three
trials for each tensegrity to understand the variance associated
with implementing a fixed generated path on actual hardware. To
track differences between simulation and hardware, we recorded
the tensegrity executing the path with an HD camera facing
downward. The obstacle was chosen to be a flat wooden block
that would indicate whether a collision occurred if it were
occluded from above.

Having stored the faces that the tensegrity traversed as the out-
put of our path planning algorithm, we translated the calculated
path to a series of actuator commands. Of course, the exact nature
of the path-to-actuator command mapping is dependent on the
type of actuator. For out-of-plane expanding membrane actua-
tors, we simply inflated the membrane on the downward face of
the tensegrity, leveraging the rolling mechanism depicted in the
top of Fig. 4, one similar to the rolling mechanism proposed for
other membrane-driven robot systems [27]. The system becomes

unstable and the direction it will roll is unpredictable. However,
we can direct the roll by also inflating all the adjacent faces
except the one in the direction of the desired roll. We utilized
an Arduino Uno in communication with miniature pressure
regulators [28] to command rolling sequences.

Fig. 7 juxtaposes experimental and simulated path planning
results for one of the three conducted trials. Each tensegrity
experienced propagation of error in rolling, evidenced by the
difference between the simulated trajectory (black line with solid
dots pinpointing centroid location) and experimental trajectory
(dotted line with white dots).

Fig. 8 plots the cumulative absolute angle error as well as the
cumulative distance error step-wise throughout the experiment
for each tensegrity shape. Plotted points represent an average
of the three trials. Confidence bars give one standard deviation
from the mean. Step-wise error accrual is due to a number of
factors. First, the pneumatic tether and wires emanating from
a tensegrity bias direction. To achieve longer and unimpeded
rolling sequences, tether-less operation is necessary. Second, our
algorithm assumes perfect rolling. As can be seen from Supple-
mentary Video Part 2, sliding and bounce stray the tensegrities
from their theoretical perfect rolling trajectories. By switching
the membrane type to extension or contraction, it is likely we
could reduce bouncing and sliding because in those types of
actuation, the tensegrity “relaxes” to its next face rather than
“falling” as with inflation. Additionally, the 3D-printed nodes
on the tensegrities were made from thermoplastic. Choosing a
material for the nodes with a higher friction coefficient could al-
leviate sliding issues. Third, face edge lengths of the tensegrities
were not entirely uniform and therefore did not match those of
the perfect polyhedra in simulation. Disparate tensions caused
by the arrangement of internal struts skewed edge lengths. The
results of Fig. 7 and 8 and observation of variance in hardware
reinforces that a noise-free estimate of the path-length heuristic
cannot be guaranteed admissible.

While conducting the experiment, we found that slow, quasi-
static inflation of the actuators lead to more stable and repeatable
rolls. Fast inflation imparted significant angular momentum to

Authorized licensed use limited to: Yale University. Downloaded on September 11,2020 at 15:20:12 UTC from IEEE Xplore.  Restrictions apply. 



BAINES et al.: ROLLING SOFT MEMBRANE-DRIVEN TENSEGRITY ROBOTS 6573

Fig. 7. Path planning algorithm implemented in simulation and translated to actual tensegrities. The same simple problem is shown for each polyhedral variant
to home in on idiosyncrasies of operation. The dashed line with white dots at the end of the frames indicates the experimental trajectory of the centroids while the
solid line with black dots, the theoretical trajectory. Scale bar in top left of each experiment sequence: 50 mm.

Fig. 8. Cumulative absolute error between simulated and experimental values of the three tensegrities as they roll. Plotted points are a mean of three experimental
trials. Confidence bars indicate one standard deviation above and below the mean.

the tensegrities and caused them to roll multiple times, deviating
from steps in the generated path. Although multiple rolls for a
single inflation may not be desirable when carefully following
a generated path, the behavior could be leveraged in the interest
of dynamic or unusual modes of locomotion.

As a last note on practical implementation, though it exhibited
the least average angle and length error step-to-step on its
trajectory due to its sharp contours, (cumulative angle and length
errors of 32.4° and 53.3 mm, respectively) tipping the cube took
significantly more inflation than the other polyhedra (which ap-
proximate spheres to a greater degree). The initial high-pressure
hurdle to tip sometimes prevented the downward membrane’s

inflation from tipping the cube over the appropriate edge. The
opposite problem occurred with the rhombicuboctahedron: it
rolled too easily and freely. In step 7 of the trial visualized in
Fig. 7, the rhombicuboctahedron deviated from the final step of
its path substantially, even though the correct actuators inflated.
Consequently, the angle error for the rhombicuboctahedron in
step 7 of Fig. 8 has a large standard deviation. Since a rhom-
bicuboctahedron is more spherical than a cube, rolling to a
certain point requires less pressure but is associated with higher
variability. Especially with neighboring actuators inflated, the
rhombicuboctahedron assumes a very rounded surface that tips
with little bias.

Authorized licensed use limited to: Yale University. Downloaded on September 11,2020 at 15:20:12 UTC from IEEE Xplore.  Restrictions apply. 



6574 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 5, NO. 4, OCTOBER 2020

Due to the confounds mentioned above, particularly
nonequivalent edge lengths induced by disparate tensions,
collisions occurred. In the trial pictured in Fig. 7, the dodeca-
hedron collided with the right portion of the obstacle in step 2
of its trajectory. The rhombicuboctahedron also collided with
the obstacle in step 3. In spite of the collisions and deviations
from simulation, the results of Fig. 7 serve as a testament to the
compatibility of membrane actuators and the generalized poly-
hedra path planning algorithm. Knowledge of how membrane
tensegrities replicate paths in real life can help inform the design
of robots for specific path planning problems that require, say,
the location certainty of the cube, the maneuverability of the
dodecahedron, or the spontaneity of the rhombicuboctahedron.

IV. CONCLUSION

We presented a new class of tensegrity robot composed of
membrane actuators. Membrane-driven tensegrity robots are
easy to fabricate, able to be tailored to arbitrary geometries,
and deform in numerous ways. The membrane actuators work
in tandem with a generalized path planning algorithm, providing
a tool set for rapidly designing and implementing tensegrities for
rolling. In future work, we intend to utilize an IMU to account
for the disparity between theoretical and actual orientation of a
downward face to correct the path planner in real-time. We will
also explore path planning with different membrane actuator
types introduced herein, such as extension, contraction, and
combinations of these types on the same system. Lastly, we
should remark that the A* to Algorithm 1 pipeline is by no stretch
optimal. The objective of the pipeline was to circumvent the
scaling problem associated with large search spaces of potential
moves for non-tessellating polyhedra footprints. For smaller-
scale problems, we found that A* with step-wise geometric
constraints can be used to generate guaranteed admissible paths.
Since the intention of the present work was to introduce the
concept of complementary hardware and generalized path plan-
ner for customized polyhedra membrane-driven tensegrities, we
leave heuristic tuning to future work.

REFERENCES

[1] R. E. Skelton and M. C. De Oliveira, Tensegrity Systems. Berlin, Germany:
Springer, Jun. 2009.

[2] S. Levin, “The tensegrity-truss as a model for spine mechanics: Biotenseg-
rity,” J Mech. Med. Biol., vol. 2, pp. 375–388. 2002.

[3] T. D’Estree Sterk, “Shape control in responsive architectural structures
- Current reasons and challenges,” in Proc. 4th World Conf. Structural
Control Monit., 2006, Art. no. eaat1853.

[4] K. Miura and Y. Miyazak, “Concept of the tesnsion truss antenna,” AIAA
J., vol. 28, no. 6, pp. 1098–1104, 1990.

[5] C. Paul, F. J. Valero-Cuevas, and H. Lipson, “Design and control of
tensegrity robots for locomotion,” IEEE Trans. Robot., vol. 22, no. 5,
pp. 944–957, Oct. 2006.

[6] K. Caluwaerts et al., “Design and control of compliant tensegrity robots
through simulation and hardware validation,” J. Roy. Soc. Interface,
vol. 11, no. 98, 2014, Art. no. 20140520.

[7] V. SunSpiral et al., “Tensegrity based probes for planetary exploration:
Entry, descent and landing and surface mobility analysis,” in Proc. 10th
Int. Planet. Probe Workshop, 2013.

[8] A. Agogino et al., “Super Ball Bot - structures for planetary landing
and exploration. NASA Innovative Advanced Concepts (NIAC) Program,”
Final Report, 2013.

[9] M. Vespignani, J. M. Friesen, V. SunSpiral, and J. Bruce, “Design of SU-
PERball V2, a Compliant Tensegrity Robot for Absorbing Large Impacts,”
in Proc. IEEE Int. Conf. Intell. Robots Syst., 2018, pp. 2865–2871.

[10] L.-H. Chen et al., “Soft spherical tensegrity robot design using rod-
centered actuation and control,” J. Mechanisms Robot., vol. 9, no. 2, 2017,
Art. no. 025001.

[11] J. Rieffel and J.-B. Mouret, “Adaptive and resilient soft tensegrity robots,”
Soft Robot., vol. 5, no. 3, pp. 318–329, 2018.

[12] Y. Koizumi, M. Shibata, and S. Hirai, “Rolling tensegrity driven by
pneumatic soft actuators,” in Proc. IEEE Int. Conf. Robot. Automat., 2012,
pp. 1988–1993.

[13] J. W. Booth et al., “OmniSkins: Robotic skins that turn inanimate objects
into multifunctional robots,” Sci. Robot., vol. 3, no. 22, 2018, Art. no.
eaat1853.

[14] F. A. dos Santos et al., “Design and experimental testing of an adaptive
shape-morphing tensegrity structure, with frequency self-tuning capabil-
ities, using shape-memory alloys,” Smart Mater. Struct., vol. 24, no. 10,
2015, Art. no. 105008.

[15] M. Shibata, F. Saijyo, and S. Hirai, “Crawling by body deformation of
tensegrity structure robots,” in Proc. IEEE Int. Conf. Robot. Automat.,
2009, pp. 4375–4380.

[16] K. Liu et al., “Programmable deployment of tensegrity structures by
stimulus-responsive polymers,” Sci. Rep., vol. 7, no. 1, 2017, Art. no.
3511.

[17] S. Y. Kim et al., “Reconfigureable soft body trajectories using unidirec-
tionally stretchable laminae,” Nat. Commun., vol. 10, 2019, Art. no. 3464.

[18] C. S. Kothera et al., “Experimental characterization and static modeling
of McKibben actuators,” J. Mech. Des., vol. 131, no. 9, 2009, Art. no.
091010.

[19] A. Iscen et al., “Controlling tensegrity robots through evolution,” in Proc.
15th Annu. Conf. Genetic Evol. Comput. Conf., 2013, Art. no. 1293.

[20] M. Zhang et al., “Deep reinforcement learning for tensegrity robot loco-
motion,” in Proc. IEEE Int. Conf. Robot. Automat., 2017, pp. 634–641.

[21] J. Luo, R. Edmunds, F. Rice, and A. M. Agogino, “Tensegrity robot
locomotion under limited sensory inputs via deep reinforcement learning,”
in Proc. IEEE Int. Conf. Robot. Automat., 2018, pp. 6260–6267.

[22] K. Kim et al., “Rolling locomotion of cable-driven soft spherical tensegrity
robots,” Soft Robot., vol. 7, no. 3, pp. 346–361, 2020.

[23] M. Vespignani, C. Ercolani, J. M. Friesen, and J. Bruce, “Steerable
locomotion controller for six-strut icosahedral tensegrity robots,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., 2018, pp. 2886–2892.

[24] Z. Littlefield et al., “From quasistatic to kinodynamic planning for spher-
ical tensegrity locomotion,” in Proc. Int. Symp. Robot. Res., 2017.

[25] S. Piccinocchi et al., “Planning motions of polyhedral parts by rolling,”
Algorithmica, vol. 26, no. 3-4, pp. 560–576, 2000.

[26] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Trans. Syst. Sci. Cyber., vol.
SSC-4, no. 2, pp. 100–107, Jul. 1968.

[27] E. Steltz, A. Mozeika, N. Rodenberg, E. Brown, and H. M. Jaeger, “JSEL:
Jamming skin enabled locomotion,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., 2009, pp. 5672–5677.

[28] J. W. Booth, J. C. Case, E. L. White, D. S. Shah, and R. Kramer-Bottiglio,
“An addressable pneumatic regulator for distributed control of soft robots,”
in Proc. IEEE Int. Conf. Soft Robot., 2018, pp. 25–30.

Authorized licensed use limited to: Yale University. Downloaded on September 11,2020 at 15:20:12 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


